Pendulum Error Analysis

Pendulum Measurement Error Analysis

Example 2.7

Measurements of a simple pendulum's period: 2.63 s, 2.56 s, 2.42 s, 2.71 s, and 2.80 s. Calculate absolute errors, relative error, and percentage error.

Measurement Value (s) Absolute Error (s)
1 2.63 +0.01
2 2.56 -0.06
3 2.42 -0.20
4 2.71 +0.09
5 2.80 +0.18

Calculations

Mean period:

\[ T_{mean} = \frac{2.63 + 2.56 + 2.42 + 2.71 + 2.80}{5} = \frac{13.12}{5} = 2.624 \, \text{s} \approx 2.62 \, \text{s} \]

Mean absolute error:

\[ \Delta T_{mean} = \frac{0.01 + 0.06 + 0.20 + 0.09 + 0.18}{5} = \frac{0.54}{5} = 0.108 \, \text{s} \approx 0.11 \, \text{s} \]

Final reported value with proper significant figures:

\[ T = 2.6 \pm 0.1 \, \text{s} \]

(Range: 2.5 s to 2.7 s)

Percentage error:

\[ \text{Percentage error} = \left( \frac{0.1}{2.6} \times 100 \right)\% = 3.85\% \approx 4\% \]

Key Concepts

  • Absolute Error: Difference between measured value and true/mean value
  • Mean Absolute Error: Average magnitude of absolute errors
  • Relative Error: Ratio of mean absolute error to the mean value
  • Percentage Error: Relative error expressed as percentage
  • Significant Figures: The reliable digits in a measurement

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top