3D Magnetic Coil Simulation
This interactive 3D simulation demonstrates Example 4.11, showing the behavior of a current-carrying coil in a magnetic field.
Simulation
(a) Field at Center:
2 × 10⁻³ T (direction given by right-hand rule)
(b) Magnetic Moment:
10 A·m² (direction given by right-hand rule)
(c) Torques:
Initial torque (θ=0°): 0 N·m
Final torque (θ=90°): 20 N·m
(d) Angular Speed:
20 rad/s (when rotated by 90°)
Key Equations:
Magnetic field at center: \( B = \frac{\mu_0 NI}{2R} \)
Magnetic moment: \( m = NIA = NIπr^2 \)
Torque: \( \tau = mB\sinθ \)
Angular speed: \( \omega = \sqrt{\frac{2mB}{I}} \)
Solution to Example 4.11
(a) Field at Center:
\[ B = \frac{\mu_0 NI}{2R} \]
Given: \( N=100 \), \( I=3.2 \) A, \( R=0.1 \) m
\[ B = \frac{4π×10^{-7}×100×3.2}{2×0.1} = 2×10^{-3} \text{ T} \]
Direction given by right-hand thumb rule.
(b) Magnetic Moment:
\[ m = NIA = NIπr^2 \]
\[ m = 100×3.2×3.14×10^{-2} = 10 \text{ A·m}^2 \]
Direction given by right-hand thumb rule.
(c) Torques:
\[ \tau = mB\sinθ \]
Initial (θ=0°): \( \tau_i = 10×2×\sin0° = 0 \text{ N·m} \)
Final (θ=90°): \( \tau_f = 10×2×\sin90° = 20 \text{ N·m} \)
(d) Angular Speed:
From work-energy principle:
\[ \frac{1}{2}I\omega^2 = mB(1-\cos90°) \]
\[ \frac{1}{2}×0.1×\omega^2 = 10×2×1 \]
\[ \omega = \sqrt{\frac{2×20}{0.1}} = 20 \text{ rad/s} \]